Question
There are two houses of the same height on both sides of
a 15-meter wide road. From a point on the road, elevation angles of the houses are 30° and 60° respectively. Find the height of the houses.Solution
Let y be the height of the houses, here AB = CD = y meter. Let x be the distance between the point on the road and the house making an elevation angle of 60°, here BE = x meter. Then, (15 - x) is the distance between the point on the road from the house making an elevation angle 30°, here DE = (15 - x) meter. Now, tan 60° = AB/BE ⇒ √3 = y/x ⇒ x = y/√3  ...(i) Also, tan 30° = CD/DE ⇒ 1/√3 = y/(15 - x) ⇒ √3y = 15 - x ⇒ √3y = 15 - y/√3  [from equation i] ⇒ 3y = 15√3 - y ⇒ 4y = 15√3 ⇒ y = 15√3/4 ≈ 6.5 meter
If sin (2x + 50) o = cos (2y - 50) o, such that, 0o < x + y < 90o, then find the value of tan(x + y) .
What is the value of sin(B – C) cos(A – D) + sin(A – B) cos(C – D) + sin(C – A) cos(B – D)?
If {(tanx)/(secx)} × cosx = (1/2), then determine the value of ‘sin2x’.
If sin θ + cos θ = 1.2, find the value of sin θ. cos θ.
- Calculate the value of sin120 o  + cos180 o  + tan225 o .
If cot A = 12/5, then the value of (sin A + cos A) × sec A is ________.
- Find the simplified value of the expression:sin 2 45 o  + sin 2 60 o  - (1/3) X tan 2 60 o
If tan² 45°- cos² 60° x sin 45° cos 45° cot 30°, then find the value of 'x'.
What is the simplified value of the given expression?
2(sin² 15° + sin² 75°) + 4sin 30° - (2sec 60° + cot 45°)
If sec a + tan a = 3, find the value of sin a.Â