Question
What is the time taken by the boat to travel 48 km in
still water? Statement I: Â The boat travels 36 km upstream and 60 km downstream in 6 hours. Statement II: Â The upstream speed of the boat is 40% slower than its downstream speed. Statement III: Â The boat travels 30 km upstream and 70 km downstream in 6 hours. The problem presents three statements labeled as "I, II, and III," and you need to determine whether the data provided in these statements is sufficient to answer the question.Solution
ATQ, Statement I: Let the downstream and upstream speeds of the boat are 'x' km/h and 'y' km/h respectively. So, 60/x + 36/y = 6 Here we have two variables, so the equation can’t be solved. Data in statement I alone is not sufficient to answer the question. Statement II: Let the downstream speed of the boat = x km/h So the upstream speed of the boat = 0.6x km/h No additional data is given, so the speed of the boat can’t be determined. Data in statement II alone is not sufficient to answer the question. Let the downstream and upstream speeds of the boat are x km/h and y km/h respectively. So 70/x + 30/y = 6 Here we have two variables, so the equation can’t be solved. Data in statement III alone is not sufficient to answer the question. Combining statements I and II: Let the downstream speed of the boat = x km/h So the upstream speed of the boat = 0.6x km/h 60/x + 36/0.6x = 6 60/x + 60/x = 6 x = 120/6 = 20 So the downstream and upstream speeds of the boat are 20 km/h and 12 km/h respectively. Speed of the boat in still water = (20 + 12)/2 = 16 km/h So the time taken by the boat to cover 48 km in still water = 48/16 = 3 hours Data in statements I and II together are necessary to answer the question. Combining statements II and III: Let the downstream speed of the boat = x km/h So the upstream speed of the boat = 0.6x km/h 70/x + 30/0.6x = 6 70/x + 50/x = 6 x = 120/6 = 20 So the downstream and upstream speeds of the boat are 20 km/h and 12 km/h respectively. Speed of the boat in still water = (20 + 12)/2 = 16 km/h So the time taken by the boat to cover 48 km in still water = 48/16 = 3 hours Data in statements II and III together are necessary to answer the question. Combining statements I and III: Let the downstream and upstream speeds of the boat are x km/h and y km/h 60/x + 36/y = 6 ………. (i) 70/x + 30/y = 6 ………. (ii) Solving equations (i) and (ii), we get x = 20 and y = 12 So the downstream and upstream speeds of the boat are 20 km/h and 12 km/h respectively. Speed of the boat in still water = (20 + 12)/2 = 16 km/h So the time taken by the boat to cover 48 km in still water = 48/16 = 3 hours Data in statements I and III together are necessary to answer the question.
Within how many days is a Public Information Officer (PIO) required to respond to an RTI application under the RTI Act, 2005?
What type of partnership arises when no provision is made by contract between the partners for the duration or determination of the partnership?
As per the Indian Penal Code (IPC), attempt to wage war against the state is punishable _________
According to the Motor Vehicles Act which authority, as prescribed by the Central Government, may issue a driving licence valid throughout India for veh...
As per section 6 of the Central Vigilance Commission Act what action can the President take in the case of a Central Vigilance Commissioner or Vigilance...
The definition of movable property under IPC excludes______________________
What is the imprisonment for resisting execution of decree under Section 74 of Code of Civil Procedure?
What does the term “capital account transaction” refer to as per FEMA?
In which of the following cases court held that –
 the Insolvency Act would prevail over the Transfer of Property Act?
Any partner of an LLP is: