Question
Average of eleven consecutive numbers is 42. Find the
sum of smallest and largest number.Solution
Let the numbers be (a - 5), (a - 4), (a - 3), (a - 2), (a - 1), a, (a + 1), (a + 2), (a + 3), (a + 4) and (a + 5).
So, (a - 5 + a - 4 + a - 3 + a - 2 + a - 1 + a + a + 1 + a + 2 + a + 3 + a + 4 + a + 5) ÷ 11 = 42
Or, (11a/11) = 42
Or, 'a' = 42
Required sum = a - 5 + a + 5 = 2a = 2 × 42 = 84
Find the value of the given expression.
2 × (sin 30° + tan 45°)
- If cosec A = (2/√3), then what will be the value of tan⁴ A?
- If sin (4A − 5B) = (√2/2) and cos (A + B) = (√2/2), where 0° < A, B < 90°, then find the value of ‘A’.
- If cot A = √3, then what will be the value of cosec⁴ A?
Determined the simplified value of the given expression:(1 - sin2 q) X (sec q + tan q) X (sec q - tan q) X cosec2 q
Solve for x in the interval [0, 2π]: 2 sin²x + 3 sinx - 2 = 0.
If (sin A + cos A) = √3 cos (90° - A), then find the value of cot A.
If √3cosec 2x = 2, then the value of x:
If cos2B = sin(2B - 30°), then find the measure of 'B'.