Question
A frustum of a square pyramid has base edges of 10 cm
and 6 cm, and a height of 8 cm. What is its volume? Calculate approximate valueÂSolution
Volume of a frustum of a square pyramid = (1/3)h(a² + b² + ab) = (1/3) * 8 * (10² + 6² + 10*6) = (1/3) × 8 × (196) = (8×196)/3 = 1568/3 = 522.66 cm or 523 cm³ Answer: (C)
I. 2x2 - 9 x + 9 = 0Â
II. 2y2 - 7 y + 3 = 0
I. 6x2 - 47x + 77 =0
II. 6y2 - 35y + 49 = 0
I. 8x2 - 2x – 15 = 0
II. 12y2 - 17y – 40 = 0
I. 8/(21x) - 2/7 = 0
II. 16y² - 24y +9 = 0
l). 2p² - 10p - 48 = 0
ll). q ² + 5q - 234 = 0
I. x2Â - 9x - 52 = 0
II. y2Â - 16y + 63 = 0
Solve the quadratic equations and determine the relation between x and y:
Equation 1: 37x² - 172x + 135 = 0
Equation 2: 29y² - 132y + ...
I. 2x2 + 13x + 21 = 0
II. 3y2 + 34y + 63 = 0
I. 2x² + 11x + 12 = 0
II. 2y² + 19y + 45 = 0
I. p2 – 15p + 56 = 0
II. q2 + 2q – 63 = 0