Question
If x = (2+√3)/(2-√3), y = (2-√3)/(2+√3)
Then find out the value of (x²+y²-xy)/(x²+y²+xy)Solution
x = (2+√3)/(2-√3) y = (2-√3)/(2+√3) So x+y = (2+√3)/(2-√3) + (2-√3)/(2+√3) = ((2+√3)²+ (2-√3)²)/((2)²- (√3)²) = 2(4+3)/(4-3) = x+y = 14 = xy = 1 (a+b)² + (a-b)² = 2(a^2+b^2 ) (a+b) + (a-b) = (a^2-b^2 ) = (x2+y2-xy)/(x2+y2+xy) = ((x+y)²-3xy)/((x+y)²-xy) = ((14)2-3 ×1)/((14)2-1) = (196-3)/(196-1) = 193/195
((67)32 × (67)-18 / ? = (67)⁸
What will come in the place of question mark (?) in the given expression?
?% of (112 X 3 + 164) + 75 = 2 X 140 + 35
20% of 450 - 15% of 400 = 25% of ?
√121 + √961− √289 =?2
45% of 1020 + ?% of 960 = 747

(〖(0.4)〗^(1/3) × 〖(1/64)〗^(1/4) × 〖16〗^(1/6) × 〖(0.256)〗^(2/3))/(〖(0.16)〗^(2/3) × 4^(-1/2) ×〖1024〗^(-1/4) ) = ?
(512) (2/3) × √64 ÷ (512) (1/3) = (64) (?/2) ÷ (2)6
1231 + 1312 + 2113 – 3211 = ?
Simplify the following expression:-