Question
If p = 50 - q - r and pq + r(q + p) = 816 then find the
value of (p2 + q2 + r2) .Solution
We have, p = 50 - q - r
So, p + q + r = 50
And, pq + r(q + p) = 816
Or, pq + qr + pr = 816
Using, (p + q + r) 2 = p2 + q2 + r2 + 2(pq + qr + pr)
So, 502 = (p2 + q2 + r2) + 2 X 816
Or, p2 + q2 + r2 = 2,500 - 1,632
So, p2 + q2 + r2 = 868
√3598 × √(230 ) ÷ √102= ?
15% of 2400 + (√ 484 – √ 256) = ?
(13)2 - 3127 ÷ 59 = ? x 4
6269 + 0.25 × 444 + 0.8 × 200 = ? × 15
...(53 + 480 ÷ 4)% of 20 = ?% of 70
Find the simplified value of the following expression:
62 + 122 × 5 - {272 + 162 - 422}
(15 × 225) ÷ (45 × 5) + 480 = ? + 25% of 1240
√ [? x 11 + (√ 1296)] = 16
11 × 25 + 12 × 15 + 14 × 20 + 15 = ?