Question
If, 4x2 + y2 + 12x + 6y + 18 =
0, then find the value of (2x + y)/(y + 6x).Solution
4x2 + y2 + 12x + 6y + 18 = 0
Or, 4x2 + 12x + 9 + y2 + 6y + 9 = 0
Or, (2x) 2 + 2 X (2x) X (3) + 32 + y2 + 2 X y X 3 + 32 = 0
Or, (2x + 3) 2 + (y + 3) 2 = 0 [because, (a + b) 2 = a2 + b2 + 2ab]
The above equation is possible, when,
2x + 3 = 0 and y + 3 = 0
Or, x = - (3/2) = - 1.5 or, y = - 3
So, (2x + y)/(y + 6x) = -6/-12 = 0.5
Statements: J # K # L $ T & A % B % C
Conclusions : I. A @ C II. A & C �...
Statement: W > V; T > S > U; T < V
Conclusion:
I.W > U
II. W > S
Statement: A≤T<B =C ≤P<D;D>J ≥S
I. C >S
II. J < D
Statement: F ≥ I ≥ S ≥ H ≥ Y
Conclusion: I. H ≤ F II. Y ≤ I
...Which of the following expressions will be false if the expression Q < H = G ≤ E > U is definitely true?
Statements : T ≥ G; G > Z < Q ≥ P; P ≥ L < H = E
Conclusions :
I. Q > T
II. L ≤ Q
III. H > G
...Statement:
N > I ≥ H > O; O ≤ J ≤ K < F; H > P < C; C = R < S;
Conclusion:
I. I > C
II. P < F
III. H < S
Statements: T < I = Q < U ≤ V; U > F; J = U ≤ E
Conclusions:
I. E > Q
II. V ≥ T
III. T < V
IV. F = T
...Statements: 21 < 51 = 71 ≤ 61 < 11; 32 < 81 ≤ 91 =51
Conclusions:
I. 11 > 81
II. 21 > 32
III. 32 ≥ 21
Statement: A=C≤D>B; B>F ; C ≥G
I. D≥G
II. F<C