Start learning 50% faster. Sign in now
Given, x + y + z = 20, x² + Y² + z² = 160 and x z = y² We know, (x + y + z) ² = (x² + Y²+ z²) + 2 (x y + y z + x z) or (30) ² = 460 +2 (x y + y z + x z) or (x y +y z + z x) = (900 - 460) =440/2 Or (x y + y z + z x) = 120 Or (x y + y z + y²) = 120 Or y (x + y + z) = 120 Or y x 30 = 120 or y = (120/30) = 4 Therefore, x z = 4² = 16
Simplify: sin (A + B) sin (A - B)
If 2cosA + secA = 2√2 , 0° < < 90°, then the value of 2(sec 4 A + cosec 4 A) is:
If sin A - cos A = 3/7, then find value of sinA + cos B, where A is an acute angle.
The minimum value of 3 sin2 θ + 4 cos2 θ is
...A ladder is leaning against a wall, making an angle of 60° with the ground. The top of the ladder reaches a window 15 meters above the ground. Find the...
Solve for x in the interval [0, 2π]: 2 sin²x + 3 sinx - 2 = 0.
Find the value of sin(θ) if 2sinθ = tanθ, for 0 < θ < 90°.