Question
Solution
According to the question, x12 + x9 + x6 + x3 + 1 ⇒ (x3)4 + (x3)3 + (x3)2 + (x3) + 1 ⇒ (−1)4 + (-1)3 + (-1)2 + (-1) + 1 ⇒ 1 - 1 + 1 - 1 + 1 ⇒ 3 - 2 = 1
- What should be the value of t in the equation x² + tx + 64 = 0 so that it has two equal real roots?
I. 2x² + 11 x + 15 = 0  Â
II. 2y² - 19 y + 44 = 0  Â
Find the value of 'x' and 'y' in the following equation:
8x - 3y = 58
5x + 2y = 106
If x + 1/x = 3, find x² + 1/x².
I. 2x2 - 5x - 33 =0
II. 2y2 + 5y - 25 = 0
(i) 2x² + 14x - 16 = 0
(ii) y² – y – 12 = 0
I. 96y² - 76y – 77 = 0
II. 6x² - 19x + 15 = 0
I.70x² - 143x + 72 = 0
II. 80 y² - 142y + 63 = 0
I. x² + 3x – 154 = 0
II. y² + 5y – 126 = 0
I. 12a2 – 55a + 63 = 0
II. 8b2 - 50 b + 77 = 0
...