Question
Which of the following accurately describes how
reinforcement learning differs from supervised learning in machine learning?Solution
Reinforcement learning (RL) differs fundamentally from supervised learning (SL) in its focus and methodology. RL is designed to handle sequential decision-making problems, where an agent interacts with an environment and learns by maximizing cumulative rewards over time. Key distinctions include: 1. Sequential Decision-Making: RL considers the state of an environment at each step and takes actions that impact future states. For example, in a robot navigating a maze, each action influences the subsequent positions, making the process dynamic and sequential. 2. Absence of Labeled Data: Unlike SL, RL does not rely on labeled input-output pairs. Instead, it uses reward signals as feedback to adjust its actions. 3. Cumulative Reward Optimization: RL aims to maximize long-term benefits, taking into account delayed rewards. This approach is essential in tasks like game-playing or resource allocation. In contrast, SL operates on fixed datasets where inputs and corresponding outputs are predefined, making it effective for tasks like classification and regression but unsuitable for dynamic environments. Why Other Options Are Incorrect: тАв A) RL requires labeled data: RL does not use labeled datasets; it relies on interaction and feedback from the environment. тАв B) SL optimizes based on immediate feedback: SL does not work with feedback; it uses labeled data to minimize loss. RL focuses on cumulative rewards, not immediate feedback. тАв C) RL operates without feedback: RL explicitly depends on feedback in the form of rewards or penalties. тАв D) SL is used for exploration: SL predicts based on historical data, whereas RL uses exploration to improve decision-making policies.
Dependent рдХреЗ рд▓рд┐рдП рд╕рд╣реА рд╣рд┐рдиреНрджреА рдкрд╛рд░рд┐рднрд╛рд╖рд┐рдХ рд╢рдмреНрдж рд╣реИ-
Grievance рдХреЗ рд▓рд┐рдП рд╕рд╣реА рд╣рд┐рдиреНрджреА рдкрд╛рд░рд┐рднрд╛рд╖рд┐рдХ рд╢рдмреНрдж рд╣реИ-
Letter of trust рдХреЗ рд▓рд┐рдП рд▓рд┐рдП рд╕рд╣реА рдкрд╛рд░рд┐рднрд╛рд╖рд┐рдХ рд╢рдмреНрдж рд╣реИ
рдирд┐рдореНрдирд▓рд┐рдЦрд┐рдд рд╡рд╛рдХреНрдп рдХрд╛ рд╕рд╣реА рдЕрдиреБрд╡рд╛рдж рдХреНрдпрд╛ рд╣реЛрдЧрд╛ ?
рдХрд░ рд╕реБрдзрд╛рд░ рдХрд╛ я┐╜...
Castigated рдХреЗ рд▓рд┐рдП рд╕рд╣реА рд╣рд┐рдиреНрджреА рдкрд╛рд░рд┐рднрд╛рд╖рд┐рдХ рд╢рдмреНрдж рд╣реИ
рд╢рдмреНрджреЛрдВ рдореЗрдВ рдХреМрди рд╕рд╛ тАШ┬а рдирд┐рдХрд╛рд▓рдирд╛ тАШ рд╢рдмреНрдж рдХрд╛ рд╕рд╣реА рдЕрдВрдЧреНрд░реЗрдЬреА рдкрд░реНрдпрд╛рдпя┐╜...
рдирд┐рдореНрдирд▓рд┐рдЦрд┐рдд рдореЗрдВ рд╕реЗ┬а рд░реЛрдЬрдЧрд╛рд░ рд╕реГрдЬрди ┬а ┬а┬ард╢рдмреНрдж рдХрд╛ рд╡рд┐рддреНрддреАрдп рд╢рдмреНя┐╜...
рджрд┐рдП рдЧрдП рд╢рдмреНрджреЛрдВ рдореЗ рд╕реЗ рдХреМрди рд╕рд╛┬а рд╢рдмреНрдж Innovation рдХрд╛ рд╕рд╣реА рдЕрд░реНрде рдирд╣реАрдВ рдкреНрд░рджрд╛я┐╜...
рдирд┐рдореНрдирд▓рд┐рдЦрд┐рдд рдкреНрд░рд╢реНрдиреЛ рдХрд╛ рд╕рд╣реА рдЕрдВрдЧреНрд░реЗрдЬрд╝реА рд╢рдмреНрдж рдЪреБрдиреЗред
рд╕рд╣я┐╜...
Condign рдХреЗ рд▓рд┐рдП рд╕рд╣реА рд╣рд┐рдиреНрджреА рдкрд╛рд░рд┐рднрд╛рд╖рд┐рдХ рд╢рдмреНрдж рд╣реИ