Question
Which natural language processing (NLP) technique is
best suited for understanding the contextual meaning of words in a sentence?Solution
Transformers like BERT (Bidirectional Encoder Representations from Transformers) have revolutionized NLP by capturing contextual word representations. Unlike traditional techniques, BERT processes words in both their preceding and succeeding contexts, enabling nuanced understanding. 1. Contextual Embeddings: BERT generates embeddings that vary depending on the surrounding words, addressing issues like polysemy (e.g., "bank" as a financial institution vs. a riverbank). 2. Bidirectionality: By analyzing text in both directions, BERT captures deeper linguistic patterns and relationships. 3. Pretraining and Fine-Tuning: BERT is pretrained on vast corpora and fine-tuned for specific NLP tasks, making it versatile for applications like sentiment analysis, question answering, and translation. Why Other Options Are Incorrect: тАв A) Bag of Words: Ignores word order and context, treating sentences as a collection of words. тАв B) One-Hot Encoding: Fails to capture semantic relationships between words. тАв C) Word2Vec: Generates static word embeddings, lacking context sensitivity. тАв D) TF-IDF: Focuses on word importance across documents but overlooks word order and meaning.
рд░рд╛рдЬрднрд╛рд╖рд╛ рдирд┐рдпрдо 1976 рдХрд╛ рд╡рд┐рд╕реНрддрд╛рд░ рднрд╛рд░рдд рдХреЗ рдХрд┐рд╕ рд░рд╛рдЬреНрдп рдореЗрдВ рдирд╣реАрдВ рд╣реИ ?┬а
тАШ рддреГрд╖реНрдгрд╛тАШ рдХреЗ рд╡рд┐рдкрд░реАрддрд╛рд░реНрдердХ рд╢рдмреНрдж рдХрд╛ рдЪрдпрди рдХреАрдЬрд┐рдПрдГ
рдЗрдирдореЗрдВ рд╕реЗ рдЕрдШреЛрд╖ рд╡рд░реНрдг рд╣реИ :
рдирд┐рдореНрдирд▓рд┐рдЦрд┐рдд рдореЗрдВ рд╕реЗ рдХрд┐рд╕рдореЗ рддрджреНрдзрд┐рдд рдкреНрд░рддреНрдпрдп рдХрд╛ рдкреНрд░рдпреЛрдЧ рд╣реБрдЖ рд╣реИ ?
рдирджреА ( 1) рдмрд╣рддреА ( 2) рд╣реИ ( 3) рдзреАрд░реЗ ( 4) ред рдкреНрд░рд╕реНрддреБрдд рдЦрдВрдбрд┐рдд рд╡рд╛рдХреНрдп рдореЗрдВ рд╡рд╛я┐╜...
тАЬрдирд╛рдХ рдкрд░ рд╕реБрдкрд╛рд░реА рддреЛреЬрдирд╛тАЭ┬а рдореБрд╣рд╛рд╡рд░реЗ рдХ рдЕрд░реНрде рд╣реИ тАУ
рдЕрдиреБрд░рд╛рдЧ рдХрд╛ рд╡рд┐рд▓реЛрдорд╛рд░реНрдереА рд╢рдмреНрдж рд╣реИред┬а
рдЬреЛ рджреВрд╕рд░реЛрдВ рдкрд░ рдЕрддреНрдпрд╛рдЪрд╛рд░ рдХрд░реЗрдВ ┬а рдирд┐рдореНрдирд▓рд┐рдЦрд┐рдд рдореЗрдВ рд╕реЗ рдХреМрдирд╕рд╛ рд╢рдмреНрдж я┐╜...
'рдкреЛрд╖рдХ' рдХрд╛ рдЙрдкрдпреБрдХреНрдд рд╡рд┐рдкрд░реАрддрд╛рд░реНрдердХ рд╢рдмреНрдж рд╣реЛрдЧрд╛
рдЪрд┐реЬрд┐рдорд╛рд░ рдореЗрдВ рдХреМрди рд╕рд╛ рд╕рдорд╛рд╕ ?