Question
When performing time series decomposition , which method
separates data into additive components?Solution
Explanation: Additive decomposition breaks time series data into three components: trend, seasonality, and residuals, This method is used when variations in data remain constant over time. For instance, in weather data, an additive model would work if seasonal effects (like winter temperatures) are independent of the overall temperature trend. Option A: ARIMA focuses on autoregressive and moving average properties rather than decomposition. Option B: Multiplicative decomposition is a separate method used when variations grow or shrink proportionally to the trend. Option D: Exponential decomposition is not a recognized decomposition method in time series analysis. Option E: STL decomposition includes Loess smoothing but does not strictly follow the additive framework.
The following Hindi sentences are followed by four different ways in which they can be paraphrased in English language. Identify the sentence ...
The aim of the study was to test the safety of the combination and the immune response after adding the pneumonia vaccine to the existing Covi...
MUSTER ROLL рдХрд╛ рдЕрд░реНрде рд╣реИ-
рджрд┐рдП рдЧрдП рдкреНрд░рддреНрдпреЗрдХ рдкреНрд░рд╢реНрди рдореЗрдВ рдПрдХ рд╣рд┐рдВрджреА рдХрд╛ рд╡рд╛рдХреНрдп рджрд┐рдпрд╛ рдЧрдпрд╛ я┐╜...
рдмреИрдВрдХ рд╢рдмреНрджрд╛рд╡рд▓реА┬а рдХреЗ рдЕрдиреБрд╕рд╛рд░ hard money рдХрд╛ рд╣рд┐рдВрджреА рдкрд░реНрдпрд╛рдп рд╣реЛрддрд╛ рд╣реИ ред
The operator is a green hand in this field.┬а
CARRIED DOWN рдХреЗ рд▓рд┐рдП рд╕рд╣реА рд╣рд┐рдиреНрджреА рдкрд╛рд░рд┐рднрд╛рд╖рд┐рдХ рд╢рдмреНрдж рд╣реИ -┬а
рдирд┐рдореНрдирд▓рд┐рдЦрд┐рдд┬а рд╡рд┐рдХрд▓реНрдкреЛрдВ рдореЗрдВ рд╕реЗ Deficient рд╢рдмреНрдж рдХрд╛ рдкрд░реНрдпрд╛рдп рдирд╣реАрдВ рд╣я┐╜...
рджрд┐рдП рдЧрдП рд╢рдмреНрджреЛрдВ рдореЗ рд╕реЗ рдХреМрди рд╕рд╛ тАШрддрддреНрдкрд░рддрд╛ тАШ рд╢рдмреНрдж тАШ рдХрд╛ рд╕рд╣реА рдЕрдВрдЧреН...
рдЬрдорд╛рдирдд рдкреНрд░рддрд┐рднреВрддрд┐ рдЬрдорд╛ рдХреЗ рд▓рд┐рдП рд▓рд┐рдП рд╕рд╣реА рдкрд╛рд░рд┐рднрд╛рд╖рд┐рдХ рд╢рдмреНрдж рд╣реИ
...