Start learning 50% faster. Sign in now
Explanation: Min-Max Normalization is a technique used to scale features to a fixed range, typically [0,1]. This transformation is particularly useful for algorithms sensitive to the scale of input data, such as gradient descent-based models. This method ensures that each feature contributes proportionately to the model, eliminating bias caused by varying scales across features. Min-Max Normalization is especially suitable for cases where the data has a defined range, making it ideal for neural networks and distance-based algorithms like k-NN. Option A: Z-score Standardization scales data to have a mean of 0 and a standard deviation of 1, which is more suitable for normally distributed data. It does not confine the values to a specific range like [0,1]. Option C: One-Hot Encoding is used for categorical variables, converting them into binary vectors. It is not applicable for scaling numerical data. Option D: Logarithmic Transformation is used to handle skewness in data and is not designed to scale values into a fixed range. Option E: Ordinal Encoding converts categorical data into integers based on their ordinal rank, which is unrelated to numerical feature scaling.
वाक्यों के रिक्त स्थानों की पूर्ति के लिए दिए गए चार-चार व�...
निम्नलिखित में से कौन सा स्त्रीलिंग शब्द है ?
टैगोर की (1) / कृतियों का (2)/ अनुवाद (3) / किया गया (4) हिन्दी (5) / भाषा...
"अति" का सही उपसर्गीय अर्थ क्या है?
स्पर्श व्यंजनों में प्रत्येक वर्ग का दूसरा और चौथा व्यंज�...
आकाश को चूमने वाला - के लिए एक शब्द है-
'आधा तीतर आधा बटेर' लोकोक्ति का अर्थ है
’ आरोही ’ शब् द का विपरीतार्थक शब् द है –
शुद्ध वर्तनी वाला शब्द है __________
राधा ( 1) है ( 2) तेज़ ( 3) दौड़ती ( 4) । प्रस्तुत खंडित वाक्य में...