Question
A retail company wants to optimize its marketing
strategy by segmenting customers based on purchasing patterns. Which technique is most suitable for this task?Solution
Explanation: K-means clustering is a powerful unsupervised learning algorithm for grouping customers into distinct segments based on similar purchasing behaviors. It minimizes intra-cluster variance and ensures that customers in the same cluster exhibit closely related characteristics, such as spending frequency, product preferences, or average order value. Retailers can use these clusters to personalize marketing campaigns, recommend products, and allocate resources effectively. For instance, a cluster with high-spending customers might be targeted with premium offers, while infrequent buyers might receive discounts. K-means is computationally efficient and provides actionable insights for customer segmentation. Option A: Regression analysis predicts outcomes but does not group customers into distinct segments. Option C: PCA reduces dimensionality and aids visualization but is not inherently a segmentation technique. Option D: Sentiment analysis evaluates customer opinions but is unrelated to purchasing behavior segmentation. Option E: Time series analysis identifies trends over time but does not classify customers into groups.
рдЬрд┐рди рд╢рдмреНрджреЛрдВ рд╕реЗ рдХрд╛рдо рдХрд╛ рдХрд░рдирд╛ рдпрд╛ рд╣реЛрдирд╛ рдкрд╛рдпрд╛ рдЬрд╛рдП, рдЙрдиреНрд╣реЗрдВ тАУ
рдирд┐рдореНрдирд▓рд┐рдЦрд┐рдд рдореЗрдВ рд╕реЗ рдХреМрди рд╕рд╛ рд╕рд╣реА рд╕реБрдореЗрд▓рд┐рдд рдпреБрдЧреНрдо┬а рдирд╣реАрдВ рд╣реИ┬а
...рдирд┐рдореНрдирд▓рд┐рдЦрд┐рдд рдореЗрдВ рд╕реЗ рд╢реБрджреНрдз рд╡рд╛рдХреНрдп рдХрд╛ рдЪрдпрди рдХреАрдЬрд┐рдПред
рдирд┐рдореНрдирд▓рд┐рдЦрд┐рдд рд╢рдмреНрджреЛрдВ рдореЗрдВ рдХреМрди рд╕рд╛ рд╡рд┐рд╢реЗрд╖рдг рд╣реИ ?
'рдЬрд┐рд╕рдХреЗ рдкреЗрдЯ рдореЗрдВ рдорд╛рдБ рдиреЗ рд░рд╕реНрд╕реА (рджрд╛рдо) рдмрд╛рдБрдз рджреА рд╣реЛ', рдЙрд╕реЗ рдХрд╣рддреЗ рд╣реИрдВ
рдирд┐рдореНрдирд▓рд┐рдЦрд┐рдд рдореЗрдВ рд╕реЗ рддрджреНрднрд╡ рд╢рдмреНрдж рд╣реИ-
'рдЬреНрд╡рд╛рд░' рдХрд╛ рд╡рд┐рд▓реЛрдо рд╢рдмреНрдж рд╣реИ
'рдЦрд░рд╛' рдХрд╛ рд╡рд┐рд▓реЛрдо ______________ рд╣реЛрдЧрд╛ред
рдЖрдард╡реАрдВ рдЕрдиреБрд╕реВрдЪреА┬а рдореЗрдВ рд╡рд░реНрдгрд┐рдд рдЗрдирдореЗрдВ рд╕реЗ рдХреМрди рд╕реА рднрд╛рд╖рд╛ рдирд╣реАрдВ рд╣реИ ?
рдирд┐рдореНрдирд▓рд┐рдЦрд┐рдд рдореБрд╣рд╛рд╡рд░реЛрдВ рдХрд╛ рдЕрд░реНрде рд▓рд┐рдЦреЗрдВред
рд▓рдХреАрд░ рдХрд╛ рдлрд╝рдХя┐╜...