Question
In a diffraction experiment using a single slit, the
angular width of central maximum decreases when:Solution
In a single-slit diffraction experiment, the central maximum is the bright fringe at the center of the diffraction pattern. The angular width of this central maximum is defined as the angle between the first minima on either side of the central peak, and it is given by: Angular width = 2θ = 2Ν / a,
where:
- Îť is the wavelength of the light used
- a is the width of the slit
- Increases when the wavelength (Îť) increases
- Decreases when the slit width (a) increases
tan 4Ë Ă tan 43Ë ĂÂ tan 47Ë ĂÂ tan 86Ë = ?
- Find the value of sin²10° + sin²80° + cos²15° + cos²75°.
If sec²x + csc²x = 10, find the value of tan²x + cot²x.
If cos θ + sec θ = â5, then the value of cosÂł θ+ secÂł θ is:
If tan ι = 1/2, tan β = 1/3, then find ι + β.
- If 8cos 2 Â A + 3sin 2 Â A = 9, then calculate the value of (sec 2 Â A - 1).
If â3cosec 2x = 2, then the value of x:
If sin(3x - 2o) = cos(2x + 22o), then find the value of: {3tan(4x - 11o) + cosec(5x - 10o)} X cot(2x + 2
If tan 4θ = cot 14θ, then find the value of cos 9θ.