Start learning 50% faster. Sign in now
Let the dimension of time [T] be expressed in terms of Planck's constant [h], gravitational constant [G], and speed of light [v] as: [T] = [h]a[G]b[v]c We need to find the values of a, b, and c. Let's write down the dimensions of h, G, and v in terms of mass [M], length [L], and time [T]: [h] (Planck's constant) has dimensions of energy × time, so: [h] = [M L2 T-2][T]=[M L2 T-1] [G] (Gravitational constant) is obtained from Newton's law of gravitation F = (Gm1m2)/r2 so G = (Fr2/ m1m2): [G] = [M-1 L3 T-2] [v] (speed of light) has dimensions of length per time: [v] = [L T-1] Now, substitute these dimensions into the equation for [T]: [T] = [M L2 T-1]a [M-1 L3 T-2]b [L T-1]c [T] = [Ma L2a T-a] [M-b L3b T-2b] [Lc T-c] [T] = [Ma-b L2a+3b+c T-a-2b-c] For the dimensions to be equal on both sides, the powers of M, L, and T must be the same: For M: a − b = 0 ⟹ a = b (1) For L: 2a + 3b + c = 0 (2) For T: −a − 2b – c =1 (3) Substitute a = b from (1) into (2) and (3): From (2): 2a + 3a +c = 0 ⟹ 5a + c = 0 ⟹ c = −5a (4) From (3): −a−2a−c = 1 ⟹ −3a − c = 1 (5) Now substitute c = −5a from (4) into (5): −3a−(−5a)=1 −3a+5a=1 2a=1 a = 1/2 Since a = b, we have b=1/2. Now substitute the value of a into equation (4) to find c: c = -5a = -5/2 The dimension of time is [h1/2 G1/2 v-5/2] Therefore, the correct answer is option (C).
Three different positions of the same dice are shown. Find the number on the face opposite the face showing ‘5’.
In any code language, if AMBLE has been coded as ZNYOV, what will be the code of PATROL in that language?
Select the Venn diagram that best represents the relationship between the following classes.
Snakes, Crocodiles, Reptiles
Which number will replace the question mark (?) in the following number series?
5, 7, 9, 11, 18, ?, 34, 35, 59, 67
Select the fourth, seventh, eleventh and thirteenth letters of the word 'CATEGORISATION to form meaningful word(s).