Radius (r) of given cylindrical wooden block = 3/2 cm (because Diameter = 2*radius) Length (h) = 20cm The volume of the block = πr²h = π *(3/2)²* (20) = 45 π Now we need to find max number of pieces of 1 cm in diameter. So, radius = 1/2 cm, length = 20cm So, volume of the required block = πr2h = π*(1/2)2*(20) = 5π So, max pieces = 45 π /5 π = 9 pieces.
Statement: A > D = N ; NÂ `>=` Q; Q > S; S < T
     Conclusion: I. N > S                     II. Q `<=` A
...Statement: D < E; I < F > G; I < H > E
Conclusion: I. G ≥ D      II. D > G
Statement: M < N ≤ O = P, Q ≥ O ≤ R ≤ Z
Conclusion: I. Q > M Â Â Â Â Â Â Â Â Â Â Â Â Â Â Â Â Â Â Â Â Â Â II. Z > M
...Statements:
A = B ≤ Y < Z; P ≤ I < A; M ≤ Y < N
Conclusions:
I). Â M < Z
II). Â P < Y
III). Â N > A...
Statements: J @ K, K $ L, L & M, M % N
Conclusions: I. K @ MÂ Â Â Â Â Â Â Â Â Â Â Â Â Â Â Â Â II. N & J
...Statements: K ≥ L, N = R, L ≥ R, Q > C = K
Conclusions: I. R ≤ Q II. C ≥ N
Statements :Â Â Â Â Â Â T @ V % Z #Â C & B $ S # E; W $ C @ Z
Conclusions :Â Â Â Â Â I. E @ ZÂ Â Â Â Â Â Â Â Â Â Â Â Â Â Â Â II. S # WÂ Â...
Statements: S ≥ K > W= B > T ≤ Q > G < I
Conclusions: I. S > QÂ Â Â II. I < K
Statements: S > T > W = U ≤ V ≤ I, X > Y = S
Conclusions:
I. W > Y
II. I ≥ T
III. U < Y
Statements: M = N; O < P < Q; N > O
Conclusions:
I. Q > N
II. M > P