Question
Which of the following methods is most suitable for
forecasting future sales based on historical sales data that exhibits seasonal trends ?Solution
Explanation: The ARIMA (AutoRegressive Integrated Moving Average) model is widely used for time series forecasting, especially when the data shows seasonal patterns or trends. ARIMA models combine three components: auto-regression (AR) , differencing (I) , and moving average (MA) . It is particularly effective for forecasting future values based on past data by capturing trends and seasonality. For datasets with clear seasonal fluctuations, a seasonal ARIMA (SARIMA) model can be used, which extends ARIMA by adding seasonal terms to capture seasonal patterns more explicitly. This makes ARIMA the most suitable method for sales forecasting when trends and seasonal variations exist. Option A: A Simple Moving Average smoothens data by averaging over a window but fails to capture seasonality and trends explicitly, making it less effective for forecasting complex seasonal data. Option B: Exponential Smoothing is useful for forecasting, especially when newer observations are more relevant, but it may not adequately model both seasonal patterns and trends as effectively as ARIMA. Option D: Linear Regression can be used for trend forecasting, but it does not handle seasonality in time series data well unless additional seasonal terms are added. Option E: Naive Bayes is a classification technique and not suitable for forecasting time series data with trends or seasonality.
рд╕реНрд╡рд╛рд╕реНрдереНрдп рдПрд╡рдВ рдкрд░рд┐рд╡рд╛рд░ рдХрд▓реНрдпрд╛рдг рдордВрддреНрд░рд╛рд▓рдп рдХреЗ рд╕рдВрдмрдВрдзрд┐рдд рдЕрдзрд┐рдХ...
It was a special reunion between them and┬а their┬а teachers.
рдирд┐рдореНрдирд▓рд┐рдЦрд┐рдд рдореЗрдВ рд╕реЗ рдХреМрди рд╕рд╛ тАШmesne mortgageeтАЩ рд╢рдмреНрдж рдХрд╛ рд╡рд┐рдзрд┐рдХ рд╢рдмреНрджрд╛рд╡рд▓реА рдоя┐╜...
рдирд┐рдореНрдирд▓рд┐рдЦрд┐рдд рд╣рд┐рдВрджреА рд╡рд╛рдХреНрдп рдХрд╛ рдЕрдВрдЧреНрд░реЗрдЬреА рдЕрдиреБрд╡рд╛рдж рд╡рд╛рд▓рд╛ рд╕рд╣реА рд╡рд┐рдХрд▓реН...
The following Hindi sentences are followed by four different ways in which they can be paraphrased in English language. Identify the option which is a ...
рдирд┐рдореНрдирд▓рд┐рдЦрд┐рдд рд╡рд┐рдХрд▓реНрдкреЛрдВ┬а рдореЗрдВ рд╕реЗ рдЖрд╕реНрдердЧрди рдХрд╛ рдкрд░реНрдпрд╛рдп┬а рд╣реЛрдЧрд╛ред┬а
рдХрд╢реНрдореАрд░ рдХрд╛ рдирдЬрд╛рд░рд╛ рдмрд╣реБрдд рд╣реА рдордирдореЛрд╣рдХ рд╣реЛрддрд╛ рд╣реИред
┬ардмрд╛рдЬрд╛рд░реЛрдВ рдиреЗ рдХреАрдорддреЛрдВ рдореЗрдВ рдмрдврд╝реЛрддрд░реА рдХрд╛ рдЦрд╛рдорд┐рдпрд╛рдЬрд╛ рднреБрдЧрддрд╛ред
рд╕рд░рдХрд╛рд░реА рдкреНрд░рддрд┐рднреВрддрд┐рдпреЛрдВ рдореЗрдВ рдирд┐рд╡реЗрд╢рдХреЛрдВ рдХреЗ рд▓рд┐рдП рдЦреБрджрд░рд╛ рдкреНрд░рддреНрдп...
рдЗрд╕ рдкреНрд░рдХрд╛рд░ рдХреЗ рдкреНрд░рдХрд╛рд╢рдиреЛрдВ рдХреА рдЬрд░реВрд░рдд рдХреЛ рд╕рд╛рдорд╛рдиреНрдп рд╡рд┐рднрд╛рдЧ рджреНрд╡рд╛рд░рд╛ рдия┐╜...