Question
If sin α + cos β = 2 (0˚ ≤ β < α ≤ 90˚), then
sin[(2α + β)/3] =?Solution
sin α + cos β = 2 sin α ≤ 1; cos β ≤ 1 => α = 90˚ ; β = 0˚
sin[(2α + β)/3] = sin (180˚/3) = sin 60˚ = √3/2
What is the value of cos75°?
If tan θ + cot θ = 2 where 0 < θ < 90 ; find the value of tan30 θ + cot 29 θ.
Find the maximum value of 14 sin A + 24 cos A.
Simplify: sin (A + B) sin (A - B)
If cos2B = sin(1.5B + 41o), then find the measure of 'B'.
sin2 9 ° + sin2 10 ° + sin2 11 ° + sin2 12 ° + ……… + sin2 81 ° = ?
...Find the maximum value of (20sin A + 15cos A).
In a right triangle ABC, angle B = 90°. If tan A = 3/4 and the length of the hypotenuse is 25 cm, find the area of the triangle.
If (sinθ+cosθ)/(sinθ-cosθ) = 2, then the value of sin4 θ is
If cos2B = sin(1.5B + 27 o), then find the measure of 'B'.