Question
If sec(2A + B) = 2 and cos(A + B) = (1/√2) , find the
value of {sec 2B + tan (A + B) } given that 0o < A, B < 90oSolution
We have, sec(2A + B) = 2
Or, sec(2A + B) = sec 60o
Or, 2A + B = 60o -------- (I)
And, cos(A + B) = (1/√2)
Or, cos(A + B) = cos 45o
Or, A + B = 45o ------- (II)
On subtracting equation (II) from (I) ,
We have, (2A + B) - (A + B) = 60o - 45o
Or, 'A' = 15o
Put the value of 'A' = 15o in equation (1) ,
So, 2 X 15o + B = 60o
Or, 30o + B = 60o
Or, 'B' = 30o
Therefore, required value = sec (2 X 30o) + tan (15o+30o)
= sec 60o + tan 45o = 2 + 1 = 3
- Determine the value of:(sin 38 o cos 52 o + cos 2 38 o ) X sin 30 o + (cos 60 o tan...
- If sin (4A − B) = (√2/2) and cos (A + B) = (√2/2), where 0° < A, B < 90°, then find the value of ‘A’.
What is the value of [tan2 (90 – θ) – sin2 (90 – θ)] cosec2 (90 – θ) cot2 (90 – θ)?
...If sin θ + cos θ = 1.2, find the value of sin θ. cos θ.
- Simplify the following trigonometric expression:
15 cos 27° sec 63° − 9 cot 61° tan 29° What is the value of 1/(1+tan 2 θ ) + 1 / (1+cot 2 θ ) = ?
...If cos(2θ) = 1 - 2sin²(θ) and tan(θ) + cot(θ) = k, find the value of k when sin(θ) = 3/5.
Given that 'θ' is an angle less than 120 ° , what is the value of 'θ' if it satisfies the equation 3cos 2 θ = 2 + sin 2
Find the value of sin 30°.