Question
If sin A = 3/5 and cos B = 4/5, where A and B are acute
angles, find the value of sin(A + B).Solution
We are given sin A = 3/5. Using the Pythagorean identity: cos A = √(1 - sin²A) = √(1 - (3/5)²) = √(1 - 9/25) = √(16/25) = 4/5. Similarly, we are given cos B = 4/5. Using the Pythagorean identity: sin B = √(1 - cos²B) = √(1 - (4/5)²) = √(1 - 16/25) = √(9/25) = 3/5. Using the formula for sin(A + B): sin(A + B) = sin A cos B + cos A sin B. sin(A + B) = (3/5)(4/5) + (4/5)(3/5) = 12/25 + 12/25 = 24/25 = 0.96. Correct answer: a) 0.96
√3598 × √(230 ) ÷ √102= ?
15% of 2400 + (√ 484 – √ 256) = ?
(13)2 - 3127 ÷ 59 = ? x 4
6269 + 0.25 × 444 + 0.8 × 200 = ? × 15
...(53 + 480 ÷ 4)% of 20 = ?% of 70
Find the simplified value of the following expression:
62 + 122 × 5 - {272 + 162 - 422}
(15 × 225) ÷ (45 × 5) + 480 = ? + 25% of 1240
√ [? x 11 + (√ 1296)] = 16
11 × 25 + 12 × 15 + 14 × 20 + 15 = ?