Question
If (5sinx - cosx) = 2√2sinx, then find the value of
'tanx'Solution
(5sinx - cosx) = 2√2sinx Dividing both side with sinx, 5 – cotx = 2√2 cotx = 5 - 2√2 tanx = 1/(5 - 2√2) tanx = (5 + 2√2)/{( 5 - 2√2) × (5 + 2√2)} = (5 + 2√2)/17
Statements: E & F, H # I, G $ F, E % D, G @ H
Conclusions:
I. D $ F
II. F @ I ...
Statements: I > O = D; K < J ≤ O; L > K ≥ S
Conclusions:
I. I > S
II. D ≥ L
III. S > O
Statements: I ≤ J = K < L < M, G ≥ H = I = T
Conclusions:
I. J > G
II. M = H
III. M > H
...Statements: J > K = N ≥ O = P ≥ Q, M < L ≤ Q
Conclusions:
I. O ≥ M
II. L ≤ N
III. K > M
Statements:
A ≤ B > E ≥ F; M > E < N
Conclusions:
I. N > F
II. B > F
Statement: I ≤ S, S < X, X = F, F ≤ K
Conclusion: I. K > I II. I < X
Statements: J > A > G < N < K = V
Conclusion
I. J > K
II. V > A
...Statements : E > N > W ≤ M > L; K ≥ G; L > P = Q > G
Conclusions :
I . M > G
II . W < N
III . L < K
...If “M % N # O © P @ S © T $ W” is true then which of the following is definitely not true?
(i) M # P
(ii) O © T
(iii) N #...
Statements: D = E ≥ G = K, O > B ≤ C = K, E ≤ I < F
Conclusions: I.F > K II. I ≥ G
...