Question
If x+ 1/x = 2cosθ, then the value of x³+ 1/x³
isSolution
x+ 1/x = 2cosθ (x+ 1/x)³ = (2cosθ)³ x³+ 1/x³+ 3x × 1/x ×(x+ 1/x) = 8cos³θ x³+ 1/x³+ 3 ×2cosθ = 8cos³θ x³+ 1/x³ = 8cos³θ - 6cosθ x³+ 1/x³ = 2(4cos³θ-3cosθ) Using identity [4cos³θ-3cosθ=cos3θ] x³+ 1/x³ = 2cos3θ
More Trigonometry Questions
If x - √(3y) =19 Then find the slope in angle?
tan 1˚ × tan 2˚× …………………….tan 88˚ × tan 89˚ = ?
If 2ycosθ = x sinθ and 2xsecθ – ycosecθ = 3, then x 2 + 4y 2 = ?
If cos 2x = 1/2, then the value of x:
A man is standing at a point 40 meters away from a tower. The angle of elevation of the top of the tower from the point is 45°. After walking 20 meters...
If X = 15°, find the value of:
sin²(4X) + cos²(3X) - tan²(2X)if a sin 45 ˚ = b cosec 60 ˚ then find the value of a⁴/b⁴
...