Question
Two trains, A and B, cross each other in 20 seconds and
30 seconds respectively, when running in opposite and the same direction respectively. If the speed of the slower trains is n% of the speed of the faster trains, then find the value of (n × 2).Solution
Let the speed of train A be S1 and the speed of train B be S2. And length of train A be L1 and the length of train B be L2. According to the question, (S1 + S2) = (L1 + LB)/20 And, (S1 - S2) = (L1 + LB)/30 Here, the length of both the train is equal. So, (S1 + S2) × 20 = (S1 - S2) × 30 => 20 S1 + 20 S2 = 30 S1 – 30 S2 => 10 S1 = 50 S2 => S1/S2 = 50/10 = 5/1 Speed of slower train = n% of faster train => n% = (1/5) × 100 = 20% Therefore, (n × 2) = 20 × 2 = 40
A series is 2100, 3431, 2431, 3160, 2648, 2991
If another series 1728, __, __, __, __, p, follows the same pattern as the given number series, th...
10Â Â Â Â Â Â Â Â 6Â Â Â Â Â Â Â Â Â Â Â Â Â Â 5Â Â Â Â Â Â Â Â Â Â Â Â Â Â Â 8.5Â Â Â Â Â Â Â Â Â Â 16Â Â Â Â Â Â Â Â Â Â Â Â Â ?
...1, 27, ?, 343, 729, 1331
38    40    83    254    ?     5126
Choose the number which is different from others in the group.
62 123 214 341 ? 727
...642 202 541 312 523 ?
...800    544    416    352    ?     304
9060 5685 3488 2157 1428 1077
61                          48                          ?                    ...