Question
A train 150 meters long crosses a man running in the
same direction at a speed of 9 km/h in 15 seconds. It then crosses a platform in 25 seconds. Find the length of the platform and the speed of the train.Solution
Speed of train relative to man = 150/15 = 10 m/s = 36 km/h. Speed of train = 36 + 9 = 45 km/h. Speed = 45 × 5/18 = 25/2 m/s. Length of platform = (25 × 25/2) - 150 = 162.5 m. Correct option: c
I. 24x² - 58x + 23 = 0
II. 20y² + 24y – 65 = 0
Solve both equations I & II and form a new equation III in variable ‘r’ (reduce to lowest possible factor) using roots of equation I and II as per ...
I. 64x2 - 64x + 15 Â = 0 Â Â Â Â
II. 21y2 - 13y + 2Â =0
Solve the quadratic equations and determine the relation between x and y:
Equation 1: x² - 32x + 207 = 0
Equation 2: y² - 51y + 648 = 0
If a and b are the roots of x² + x – 2 = 0, then the quadratic equation in x whose roots are 1/a + 1/b and ab is
In the question, two equations I and II are given. You have to solve both the equations to establish the correct relation between 'p' and 'q' and choose...
I. y/16 = 4/yÂ
II. x3 = (2 ÷ 50) × (2500 ÷ 50) × 42 × (192 ÷ 12)
The equation q2 - 17x + C = 0, has two roots ‘x’ and ‘y’ such that (x – y) = 7. Find an equation which is equal to thrice of the gi...
Solve the quadratic equations and determine the relation between x and y:
Equation 1: 41x² - 191x + 150 = 0
Equation 2: 43y² - 191y + ...
Solve the quadratic equations and determine the relation between x and y:
Equation 1: x² - 24x + 143 = 0
Equation 2: y² - 26y + 165 = 0