Question
If βXβ, βYβ and βZβ are in proportion in the
same order and βXβ = 36 and βYβ = 54, then find the value of βZβ.Solution
ATQ,
Given, X = 36
And, Y = 54
Since, βXβ, βYβ and βZβ are in proportion.
So, (X/Y) = (Y/Z)
So, Z = (54 Γ 54)/36 = 81
Which algorithm returns a minimum spanning tree (MST) and uses a priority queue to select the next edge connected to the growing tree?
What is the time complexity of searching in a balanced binary search tree?
For which problem is dynamic programming NOT generally an applicable technique because it lacks overlapping subproblems?
Which of the following algorithms is most appropriate for a sorting task that requires minimal auxiliary space?
In a binary tree, if the number of leaf nodes is L, what is the number of nodes with two children?
Which of the following is true about the time complexity of Merge Sort?
The recurrence relation T(n) = 2T(n/2) + O(n) corresponds to which algorithmβs time complexity?
The amortized time for inserting into a dynamic array (like C++ vector) is:
Which data structure is most suitable for implementing recursion?
In hashing, what is a collision?