Start learning 50% faster. Sign in now
Quantity I: Surface area of a cylinder = 2πr(h + r) = 2π × 10 × (20 + 10) = 2π × 10 × 30 = 600π cm² Quantity II: Surface area of a cone = πr(l + r), where l is the slant height Slant height, l = √(r² + h²) = √(10² + 20²) = √100 + 400 = √500 ≈ 22.36 cm Surface area = π × 10 × (22.36 + 10) = π × 10 × 32.36 ≈ 323.6π cm² Comparing Quantity I and Quantity II: Quantity I = 600π cm² Quantity II ≈ 323.6π cm² Now, comparing: Quantity I > Quantity II Therefore, the correct option is: B
If sec 2A = sin2 60o + sec 60o - cos2 30 o , then find the value of (√3tan A + cot ...
If 3 tan X + cot X = 2√3, then find the value of 6 tan2 X + 2 cot2 X.
The minimum value of 3 sin2 θ + 4 cos2 θ is
...If tan θ = 4/3 and θ is an acute angle, find the value of sin θ + cos θ.
if 8 sin 2 x + 3 cos 2 x = 4 then find tan x
Find the value of (1 - sin2q) X (secq + tanq) X (secq - tanq) X cosec2q
If 7sin²θ + 3cos²θ = 4, then find the value of θ?
If sin(3θ) = cos(2θ), then find the value of θ between 0 and 90 degrees.