Question
f(x)=x+ ∣ x ∣ , then the function is:
Solution
We are given the function: f(x) = x + |x| , defined from ℝ → ℝ Let’s analyze this function. Understand the function piecewise Recall:
- |x| = x if x ≥ 0
- |x| = −x if x < 0
- 2x if x ≥ 0
- 0 if x < 0
- For x ≥ 0, f(x) = 2x
- For x < 0, f(x) = 0
- f(x) = 0 for all x < 0
- f(0) = 2×0 = 0
- For x < 0 → f(x) = 0
- For x ≥ 0 → f(x) = 2x ⇒ outputs all real numbers ≥ 0
- Not injective
- Not surjective
- Statements: E < F > G; H < I ≤ F; E > D
Conclusions:
I. F > D
II. H < E
III. G < D Statements: O < P > Q; R < V ≤ P; O > N
Conclusions:
I. P > N
II. R < O
III. Q < N
Statements: I = H ≥ T = W ≥ M; N < L ≤ M = G ≤ K
Conclusions:
I. I > G
II. N < T
III. H ≥ L
Statements: M ≥ O ≥ P ≤ W, N ≥ K ≥ Y = M
Conclusion:
I. N > W
II. Y ≥ P
Statements: X @ Y % M % N; M $ P $ Z
Conclusions : I. Y % Z II. X @ N �...
In the question, assuming the given statements to be true, find which of the conclusion (s) among given three conclusions is/are definitely true and th...
Statements:
J ≥ F = P; F > S ≥ A; S ≥ B < C
Conclusions:
I. C > A
II. B < J
Statements: A > B ≥ C ≤ D; E ≥ F ≥ G = A
Conclusion:
I. E > D
II. D ≥ E
Statements: J > K = L ≥ N > M > O ≥ P
Conclusions:
I. K ≥ O
II. J = N
III. P < NIn the question, assuming the given statements to be true, find which of the conclusion (s) among given two conclusions is /are definitely true and the...