Question
How many 4-digit even numbers can be formed using digits
1 to 6 without repetition?Solution
To form a 4-digit even number using digits 1 to 6 without repetition, we need to consider the constraints on the last digit (it must be even) and the fact that all digits used must be distinct. The available digits are 1, 2, 3, 4, 5, 6. The even digits among these are 2, 4, 6 (3 even digits). We can build the 4-digit number by filling the positions from right to left to handle the even number constraint first. Case 1: The last digit is 2. If the last digit is 2, the remaining three digits must be chosen from the remaining 5 digits (1, 3, 4, 5, 6) and arranged in the first three positions. The number of ways to do this is P(5,3)=5├Ч4├Ч3=60. Case 2: The last digit is 4. If the last digit is 4, the remaining three digits must be chosen from the remaining 5 digits (1, 2, 3, 5, 6) and arranged in the first three positions. The number of ways to do this is P(5,3)=5├Ч4├Ч3=60. Case 3: The last digit is 6. If the last digit is 6, the remaining three digits must be chosen from the remaining 5 digits (1, 2, 3, 4, 5) and arranged in the first three positions. The number of ways to do this is P(5,3)=5├Ч4├Ч3=60. The total number of 4-digit even numbers is the sum of the numbers from each case: Total = (Numbers ending in 2) + (Numbers ending in 4) + (Numbers ending in 6) Total = 60+60+60=180. Alternatively, we can think of it in terms of filling the positions: 1.┬а┬а┬а┬а Choose the last digit (units place): It must be even, so there are 3 choices (2, 4, or 6). 2.┬а┬а┬а┬а Choose the first digit (thousands place): After choosing the last digit, there are 5 remaining digits. So, there are 5 choices for the first digit. 3.┬а┬а┬а┬а Choose the second digit (hundreds place): After choosing the first and the last digits, there are 4 remaining digits. So, there are 4 choices for the second digit. 4.┬а┬а┬а┬а Choose the third digit (tens place): After choosing the first, second, and last digits, there are 3 remaining digits. So, there are 3 choices for the third digit. Total number of even numbers = (Choices for 1st digit) ├Ч (Choices for 2nd digit) ├Ч (Choices for 3rd digit) ├Ч (Choices for last digit) Total number of even numbers = 5├Ч4├Ч3├Ч3=180.
рдирд┐рдореНрдирд▓рд┐рдЦрд┐рдд рдкреНрд░рд╢реНрди рдореЗрдВ , рдЪрд╛рд░ рд╡рд┐рдХрд▓реНрдкреЛрдВ рдореЗрдВ рд╕реЗ , рдЙрд╕ рд╡рд┐рдХрд▓реНрдк рдХрд╛ рдЪ...
рдирд┐рдореНрдирд▓рд┐рдЦрд┐рдд рдкреНрд░рддреНрдпреЗрдХ рдкреНрд░рд╢реНрди рдХреЛ рдЪрд╛рд░ рднрд╛рдЧреЛрдВ рдореЗрдВ рдмрд╛рдБрдЯрд╛ рдЧрдпрд╛ рд╣реИя┐╜...
рдиреАрдЪреЗ рджрд┐рдпрд╛ рдЧрдпрд╛ рд╡рд╛рдХреНрдп рдЪрд╛рд░ рднрд╛рдЧреЛрдВ рдореЗрдВ рдмрд╛рдБрдЯрд╛ рдЧрдпрд╛ рд╣реИ ( A), (B), (C), рдФрд░ ( D) я┐╜...
рдЯреИрдЧреЛрд░ рдХреА ( 1) / рдХреГрддрд┐рдпреЛрдВ рдХрд╛ ( 2) / рдЕрдиреБрд╡рд╛рдж ( 3) / рдХрд┐рдпрд╛ рдЧрдпрд╛ ( 4) / рд╣рд┐рдиреНрджреА (...
рд░рд╛рдЬреВ рдЕрдкрдиреЗ рд╕рднреА рдорд┐рддреНрд░реЛрдВ рдХреЗ рд╕рд╛рде рдордВрджрд┐рд░ рдЧрдпрд╛ рдерд╛ред┬а┬а
рдиреАрдЪреЗ рджрд┐рдпрд╛ рдЧрдпрд╛ рдкреНрд░рддреНрдпреЗрдХ рд╡рд╛рдХреНрдп рдЪрд╛рд░ рднрд╛рдЧреЛрдВ рдореЗрдВ рдмрд╛рдВрдЯрд╛ рдЧрдпрд╛ рд╣реИ рдЬя┐╜...
рдирд┐рдореНрд▓рд┐рдЦрд┐рдд рдореЗрдВ рд╕реЗ рд╢реБрджреНрдз рд╢рдмреНрдж рдЫрд╛рдБрдЯрд┐рдП┬а
рд╡рд╛рдХреНрдп рдХреЗ рдЕрд╢реБрджреНрдз рднрд╛рдЧ рдХрд╛ рдЪрдпрди рдХрд░реЗрдВред рдпрджрд┐ рд╕рднреА рдЦрдВрдб рддреНрд░реБрдЯрд┐ рд░...
рдиреАрдЪреЗ рджрд┐рдпрд╛ рдЧрдпрд╛ рд╡рд╛рдХреНрдп рдЪрд╛рд░ рднрд╛рдЧреЛрдВ рдореЗрдВ рдмрд╛рдБрдЯрд╛ рдЧрдпрд╛ рд╣реИ ( A), (B), (C), рдФрд░ ( D) я┐╜...
рдирд┐рдореНрдирд▓рд┐рдЦрд┐рдд рдореЗрдВ рд╕реЗ рдХреМрди рд╕рд╛ рд╡рд╛рдХреНрдп рд╢реБрджреНрдз рд╣реИ?