Question
Let A={1,2,3} and a relation
R={(1,1),(2,2),(3,3),(1,2),(2,1)}. Which is false about R?Solution
Given the set A={1,2,3} and the relation R={(1,1),(2,2),(3,3),(1,2),(2,1)} on A. We need to determine which of the given properties is false for R. (A)Reflexive: A relation R on a set A is reflexive if for every element a ∈ A, (a,a) ∈ R. For A={1,2,3}, the relation R must contain (1,1),(2,2),(3,3) to be reflexive. R contains (1,1),(2,2),(3,3). Therefore, R is reflexive. So, (A) is true. (B)Symmetric: A relation R on a set A is symmetric if for every (a,b) ∈ R, it implies that (b,a) ∈ R. In R:
- (1,2) ∈ R, and (2,1) ∈ R.
- (1,1) ∈ R, and (1,1) ∈ R.
- (2,2) ∈ R, and (2,2) ∈ R.
- (3,3) ∈ R, and (3,3) ∈ R. All pairs in R satisfy the condition for symmetry. Therefore, R is symmetric. So, (B) is true.
- (1,2) ∈ R and (2,1) ∈ R. For transitivity, (1,1) should be in R, which it is.
- (2,1) ∈ R and (1,2) ∈ R. For transitivity, (2,2) should be in R, which it is.
- (1,2) ∈ R and (2,2) ∈ R. For transitivity, (1,2) should be in R, which it is.
- (2,1) ∈ R and (1,1) ∈ R. For transitivity, (2,1) should be in R, which it is.
- (1,1) ∈ R and (1,2) ∈ R. For transitivity, (1,2) should be in R, which it is.
- (2,2) ∈ R and (2,1) ∈ R. For transitivity, (2,1) should be in R, which it is.
- (1,1) ∈ R and (1,1) ∈ R. For transitivity, (1,1) should be in R, which it is.
- (2,2) ∈ R and (2,2) ∈ R. For transitivity, (2,2) should be in R, which it is.
- (3,3) ∈ R and (3,3) ∈ R. For transitivity, (3,3) should be in R, which it is. All cases satisfy the condition for transitivity. Therefore, R is transitive. So, (C) is true.
निम्नलिखित में से कौन.वर्ण अन्तःस्थ नहीं है?
'परिश्रम' का पर्यायवाची शब्द है:
ए, ऐ, ओ, औ कौन सा स्वर है ?
‘ सहानुभूति’ का विलोम शब्द है :
निम्नलिखित विलोमार्थक शब्दों में असंगत युग्म है :
इत्यादि संकेतक चिह्न है .
'धैर्य' का समानार्थक शब्द है:
'सत्य' का पर्यायवाची शब्द है:
‘ सप्तसागर’ शब्द में कौन-सा समास है ?
निम्नलिखित विलोमार्थी शब्द-युग्मों में से असंगत है :