Question
The average of a, b and c is 8 less than d. If the
average of a, b, c and d is 42, and the average of b and c is 43. then find the average of (a-6) and (d+2).Solution
ATQ, (a+b+c)/3 = d-8 a+b+c = 3d-24 a+b+c+d=42×4=168 3d-24+d = 168 4d=168+24 ∴ d=192/4 d =48 and again, b+c = 2 × 43 b+c = 86 a + b + c = 3d-24 = 144-24 =120 a = 120-86 = 34 average of (a-6) and (d+2) = ½ [(68-6) + (48+2)] = 112/2 = 5 6
If p = 24 - q - r and pq + r(q + p) = 132, then find the value of (p² + q² + r²).
((99.9 - 20.9)² + (99.9 + 20.9)² )/(99.9 x 99.9 + 20.9 x 20.9) = ?
...
Find the value of the given expression-
(4x+4 -5× 4x+2) / 15×4x – 22×4x
If 4x² + y² = 40 and x y = 6, then find the value
of 2x + y?
If p = 40 - q - r and pq + r(q + p) = 432, then find the value of (p² + q² + r²).
47.98 × 4.16 + √325 × 12.91 + ? = 79.93 × 5.91
If x + y = 4 and (1/x) + (1/y) = 24/7, then the value of (x3 + y3).
- If p = 20 - q - r and pq + r(p + q) = 154, then find the value of (p² + q² + r²).
If a = (√2 - 1)1/3, then the value of (a-1/a)3 +3(a-1/a) is: