Question
Speed of a boat in still water is three times the speed
of the boat in upstream. If the boat takes 30 minutes to cover 40 km in downstream, then find the speed of the boat in still water.Solution
Let speed of the boat in still water be ‘3x’ km/h. Speed of the boat in upstream = 3x ÷ 3 = ‘x’ km/h Speed of the stream = 3x – x = ‘2x’ km/h Speed of the boat in downstream = 3x + 2x = ‘5x’ km/h ATQ; (40/30) × 60 = 80 So, 5x = 80 Or, x = 16 So, speed of the boat in still water = 3 × 16 = 48 km/h
I. 24x² - 58x + 23 = 0
II. 20y² + 24y – 65 = 0
Solve both equations I & II and form a new equation III in variable ‘r’ (reduce to lowest possible factor) using roots of equation I and II as per ...
I. 64x2 - 64x + 15 Â = 0 Â Â Â Â
II. 21y2 - 13y + 2Â =0
Solve the quadratic equations and determine the relation between x and y:
Equation 1: x² - 32x + 207 = 0
Equation 2: y² - 51y + 648 = 0
If a and b are the roots of x² + x – 2 = 0, then the quadratic equation in x whose roots are 1/a + 1/b and ab is
In the question, two equations I and II are given. You have to solve both the equations to establish the correct relation between 'p' and 'q' and choose...
I. y/16 = 4/yÂ
II. x3 = (2 ÷ 50) × (2500 ÷ 50) × 42 × (192 ÷ 12)
The equation q2 - 17x + C = 0, has two roots ‘x’ and ‘y’ such that (x – y) = 7. Find an equation which is equal to thrice of the gi...
Solve the quadratic equations and determine the relation between x and y:
Equation 1: 41x² - 191x + 150 = 0
Equation 2: 43y² - 191y + ...
Solve the quadratic equations and determine the relation between x and y:
Equation 1: x² - 24x + 143 = 0
Equation 2: y² - 26y + 165 = 0