Question
Equation 1: x² - 144x + 5184 = 0 Equation 2: y²
- 130y + 4225 = 0Solution
From Equation 1: x² - 144x + 5184 = 0 Factorizing: (x - 72)(x - 72) = 0 So, x = 72 (repeated root). From Equation 2: y² - 130y + 4225 = 0 Factorizing: (y - 65)(y - 65) = 0 So, y = 65 (repeated root). Comparing x and y: x = 72, y = 65 → x > y Correct option: A) x > y
If p = 24 - q - r and pq + r(q + p) = 132, then find the value of (p² + q² + r²).
((99.9 - 20.9)² + (99.9 + 20.9)² )/(99.9 x 99.9 + 20.9 x 20.9) = ?
...
Find the value of the given expression-
(4x+4 -5× 4x+2) / 15×4x – 22×4x
If 4x² + y² = 40 and x y = 6, then find the value
of 2x + y?
If p = 40 - q - r and pq + r(q + p) = 432, then find the value of (p² + q² + r²).
47.98 × 4.16 + √325 × 12.91 + ? = 79.93 × 5.91
If x + y = 4 and (1/x) + (1/y) = 24/7, then the value of (x3 + y3).
- If p = 20 - q - r and pq + r(p + q) = 154, then find the value of (p² + q² + r²).
If a = (√2 - 1)1/3, then the value of (a-1/a)3 +3(a-1/a) is: