Question
Simplify the following expression.
src="" alt="" />Solution
99 - [169 Γ· (13 Γ 13) - (-4) - {3 - 17 + 10}] β 99 - [169 Γ· 169 - (-4) - {3 - 17 + 10}] β 99 - [1 - (-4) - {3 - 17 + 10}] β 99 - [1 + 4 - {3 - 17 + 10}] β 99 - [1 + 4 - {-4}] β 99 - [1 + 4 + 4] β 99 - [9] β 99 - 9 β 90
20% of 10% of 900 + 84/12 = ?2
32 of (16/8) of (30/24) of (120/x) = 30
β256 * 3 β 15% of 300 + ? = 150% of 160
If the weight of 1 liter of water is 1 kilogram, then the volume of 0.1 gram of water is how many cubic millimeters.
212.3 Γ 4414.7 Γ 4623.4 Γ 4845.85 = 462?
360 Γ· 9 + 15 % of 200 + ? * 10 = 45 * β25
?Β² = 37% of 800 β 14 Γ 18+ 5! - 20
690 Γ· (75% of 460) = ? Γ· (50% of 160)
(β7225 x β1225)/(β625) = ?