Question
Solution
AC = Length of the direct common tangents BD = Length of direct transverse tangents Let, the distance between two circles = x cm So, BD = √[x2 - (7 + 7)2] ⇒ 48 = √(x2 - 142) ⇒ 482 = x2 - 196 [Squaring on both sides] ⇒ 2304 = x2 - 196 ⇒ x2 = 2304 + 196 = 2500 ⇒ x = √2500 = 50 cm Also, AC = √[502 - (7 - 7)2] ⇒ AC = √(2500 - 0) = √2500 = 50 cm ∴ The length of BD is 48 cm, length of AC is 50 cm
- Find the maximum value of 14 sin A + 24 cos A. 
- If sec 2P = sin² 60⁰ + sec 60⁰ - cos² 30⁰, then determine the value of (√3tan P + cot² P)
- If √3 tan x = 3, then the value of x: 
 
- (1+sint)/(4-4sint)-(1-sint)/(4+4sint) =? 
 
- If (tan 8θ · tan 2θ = 1), then find the value of (tan 10θ). 
- Find the value of `1/2` cosec 10 - `2/(cosec 70)` ? 
- cos A (sec A – cos A) (cot A + tan A) = ? 
- If cosec (2A + B) = (2/√3) and cosec (A + B) = √2, then determine the value of (4A - B).