Question
Find the difference between minimum and maximum value of
'k' such that '6k8194' is always divisible by 3.Solution
A number is divisible by 3 when the sum of its digits is divisible by 3.
Sum of digits of '6k8194' = (6 + k + 8 + 1 + 9 + 4) = k + 28.
So, k + 28 should be divisible by 3.
Possible values of 'k' = 2, 5, 8
Minimum value of 'k' = 2
Maximum value of 'k' = 8
Required difference = 8 – 2 = 6
Find the value of sin 240 °
If (tan 8θ · tan 2θ = 1), then find the value of (tan 10θ).
If 4sin² θ = 3(1+ cos θ), 0° < θ < 90°, then what is the value of (2tan θ + 4sinθ - secθ)?
- If sin 2a = (1/2), then find the value of (sin a + cos a).
sin2 7Ëš + sin2 9Ëš + sin2 11Ëš + sin2 12Ëš + ……… + sin2 83Ëš = ?
If 2sin y + cos y = √3 sin y, then find the value of tan y
What is the simplified value of the given expression?
3(sin² 30° + sin² 60°) + 6sin 45° - (3sec 60° + cot 45°)
If cosB = sin(1.5B - 15°), then find the measure of 'B'.
Suppose 140sin²X + 124cos²X = 136 and 184sin²Y + 200cos²Y = 196, then determine the value of 18cosec²Xsec²Y.