Question
The ratio of quantity of milk and water in a 300 litres
mixture is 6:4, respectively. On removing 'M' litres of mixture the difference between the quantities of milk and water becomes 50 litres. Find the value of 'M'.Solution
ATQ, After removing 'M' litres of mixture, let quantity of milk and water left be 6x litres and 4x litres, respectively. According to the question, 6x - 4x = 50 Or, 2x = 50 Or, 'x' = 50 / 2 = 25 Therefore, after removal of 'M' litres of mixture, quantity of mixture left = 6x + 4x = 10x = 10 × 25 = 250 litres Therefore, 'M' = 300 - 250 = 50
Simplify:
6x + 8y - [(12x + 6y) - (4x + 3y) + 2y] - 4xIf 9x2 + 16y2 = 24xy, then find the ratio of ‘x’ and ‘y’, respectively.
- Suppose [a + (1/16a)] = 3, then the value of [16a³ + (1/256a³)] is:
If, 6x + y = 20, and 2xy = 32, and 6x > y, then find the value of 216x³ – y³.
If x + 1/x = 2, find x⁷ + 1/x⁷.
(x – 6) 2 + (y + 2) 2 + (z – 4) 2 = 0, then find the value of 4x - 3y + z.
Three cubes of metal whose edges are 3cm, 4cm and 5cm. respectively are melted and a single cube is formed. What is the length of the edge of the newly ...
A number is increased by 20%, and the resulting number is decreased by 20%. If the initial number is ₹x, the final number is ₹2880. What is the valu...