Question
A Bullet is cylindrical up to a height of 40 cm and
conical above it. If its diameter is 35 cm and the slant height of the Conical part is 22cm, then the curved area of the bullet isSolution
Radius of Cone = 35/2 cm Curved Surface area of Conical Part of a bullet = πrl = 22/7×35/2 × 22 = 1210 cm² Curved Surface area of the Cylinder = 2πrh = 2 × 22/7×35/2 × 40 = 4400 cm² Total Surface area of a Bullet = 4400 + 1210 = 5610 cm²
- Simplify the following trigonometric expression:
15 cos 27° sec 63° − 9 cot 61° tan 29° If √3 tan 2θ – 3 = 0, then find the value of tanθ secθ – cosθ where 0 < θ < 90°
If (cos A - sin A) = √2 cos (90° - A), then find the value of cot A.


If tan 3.5θ x tan 6.5θ = 1 then the value of tan 5θ is
Find the maximum value of 14 sin A + 24 cos A.

- If cos θ = (4x² – 1)/(1 + 4x²) then find the value of sin q.
The minimum value of 9 cos2 θ + 36 sec2 θ isÂ