Question
A Bullet is cylindrical up to a height of 40 cm and
conical above it. If its diameter is 35 cm and the slant height of the Conical part is 22cm, then the curved area of the bullet isSolution
Radius of Cone = 35/2 cm Curved Surface area of Conical Part of a bullet = πrl = 22/7×35/2 × 22 = 1210 cm² Curved Surface area of the Cylinder = 2πrh = 2 × 22/7×35/2 × 40 = 4400 cm² Total Surface area of a Bullet = 4400 + 1210 = 5610 cm²
If tan θ + cot θ = 2 where 0 < θ < 90 ; find the value of tan30 θ + cot 29 θ.
The Value of (sin38Ëš)/(cos52Ëš) + (cos12Ëš)/(sin78Ëš) - 4cos²60Ëš is
If x = (sin 30 ° + cos 30 ° )/sec 60 ° , then find the value of 4x.
Find the simplified value of:
(tan 40 º  + tan 20 º )/(1 - tan 40 º tan 20 º)
If sinAo = (√3/2), then find the value of (sin245o + cos230o) × A ÷ 5 given that 0 < A < 90...
If 2ycosθ = x sinθ and 2xsecθ – ycosecθ = 3, then x 2 + 4y 2 = ?
If sin x + cos x = √2 sin x, then the value of sin x - cos x is:
If 2 sec 3x = 4, then the value of x:
The value of (sin 60 º cos 30 º - cos 60 º sin 30 º)  is equal to:
- Simplify the following trigonometric expression:
11 sin 42° sec 48° − 7 tan 37° tan 53°