Question
Perimeter of a rectangle is 40% more than that of a
square of side 25 cm. If the difference between the length and breadth of the rectangle is 12 cm, respectively, then find the length of the rectangle.Solution
ATQ, Perimeter of square = 25 X 4 = 100 cm Perimeter of rectangle = 1.40 X 100 = 140 cm Let the breadth of rectangle be 'x' cm So, length of rectangle = 'x + 12' cm ATQ, 2(x + x + 12) = 140 Or, 2x + 12 = 70 Or, 2x = 58 So, 'x' = 29 Length of rectangle = 'x + 12' = 29 + 12 = 41 cm
- Simplify the following trigonometric expression:
15 cos 27° sec 63° − 9 cot 61° tan 29° If √3 tan 2θ – 3 = 0, then find the value of tanθ secθ – cosθ where 0 < θ < 90°
If (cos A - sin A) = √2 cos (90° - A), then find the value of cot A.


If tan 3.5θ x tan 6.5θ = 1 then the value of tan 5θ is
Find the maximum value of 14 sin A + 24 cos A.

- If cos θ = (4x² – 1)/(1 + 4x²) then find the value of sin q.
The minimum value of 9 cos2 θ + 36 sec2 θ isÂ