Question
A cylinder of radius 7 cm is surmounted completely by a
cone of same radius. Height of cylinder is 6 cm. Find the height of cone if volume of entire shape 1078 cubic cm.Solution
Volume of cylinder = πr2h Volume of cylinder = 1/3 × πr2h Total volume given = 1078 => πr2h + 1/3 × πr2h = 1078 => 22/7 × 49 × (6 + 1/3 × h) = 1078 => (6 + 1/3 × h) = 1078/154 => h = 3
I. √(74x-250 )– x=15
II. √(3y²-37y+18)+ 2y=18
I. 6p2 – 7p = 5p – 7p2 + 25
II. 11q2 – 63q + 90 = 0
Solve the quadratic equations and determine the relation between x and y:
Equation 1: x² - 40x + 375 = 0
Equation 2: y² - 36y + 324 = 0
I. 2x² - 15x  + 13 = 0
II. 3y² - 6y + 3 = 0
I. 5x² - 24 x + 28 = 0  Â
II. 4y² - 8 y - 12= 0  Â
I. 7x² + 52x + 21 = 0
II. 6y² + 7y - 24 = 0
I. 2y² - 3y – 14 = 0
II. 3x² - 7x + 4 = 0
Solve the quadratic equations and determine the relation between x and y:
Equation 1: 41x² - 191x + 150 = 0
Equation 2: 43y² - 191y + ...
I. x ² + 5 x + 6 = 0                Â
II. y²+ 7 y + 12= 0
...I. 3p² - 17p + 22 = 0
II. 5q² - 21q + 22 = 0