Let the radius and height of the cylinder be r and h cm respectively. ∴ h = 1.30r Total surface area of the cylinder = 2833.6 = 2πr(h + r) ∴ 2833.6 = 2πr(1.3r + r) = 2πr(2.3r) = 4.6πr2 ∴ 2833.6 = (9.2/2) × (22/7) × r2 = 2833.6x 7 x 2/22 x 9.2 ∴ r2 = 196 ∴ r = 14 and h = 18.2 Amount of water displaced = Volume of the right circular cylinder = πr2h = (22/7) × (14)2× (18.2) = 11211.2 cm³
(√4623.9 + √484.2) – √2303.97 ÷ √1296.4 × √35.98 ÷ √15.99 = ?
25.04 × 22.03 + 383.92 ÷ ? + 23.78% of 1499.98 = 926.08
(3375)1/3 x 12.11 x 6.97divide; 14.32 = ? + 15.022
(124.25 + 175.98) ÷ 3.99 + √50624 = ?% of 749.67
15.232 + 19.98% of 649.99 = ? × 4.99
2550.03 ÷ 74.98 x 49.9 = ? + 20.32
(29.97%) of 9840 + ? + (45.17% of 1240) = (31.99% of 11750)
21.11 × 4.98 + 22.03 × 4.12 – 31.95 + 95.9 × 3.02 =?
9.95% of 1299.99 + 19.95 × 17.05 - 299.99 = ?
(5.08/3.01) of 41.99 - 24.99% of 120.09 = ? - 9.99