πŸ“’ Too many exams? Don’t know which one suits you best? Book Your Free Expert πŸ‘‰ call Now!


    Question

    The product of two positive integers is 3630. If their

    HCF is 11 and their sum is 143, then find the difference between the numbers.
    A 71 Correct Answer Incorrect Answer
    B 73 Correct Answer Incorrect Answer
    C 75 Correct Answer Incorrect Answer
    D 77 Correct Answer Incorrect Answer

    Solution

    Let the numbers be 11a and 11b

    Then:
    11a Γ— 11b = 3630 β‡’ ab = 30 ...............(1)
    11a + 11b = 143 β‡’ a + b = 13

    Put a = (13 - b) in (1):
    (13 - b) Γ— b = 30
    β‡’ 13b - bΒ² = 30
    β‡’ bΒ² - 13b + 30 = 0
    β‡’ bΒ² - 3b - 10b + 30 = 0
    β‡’ b(b - 3) - 10(b - 3) = 0
    β‡’ (b - 3)(b - 10) = 0

    So, b = 3 or 10
    Then, numbers are 33 and 110
    Required difference = 77

    Practice Next
    ask-question