Question
The ratio of the area of the in-circle and the
circum-circle of a square is ÂSolution
Let the side of the Square be a Radius of In-circle = a/2 Radius of the Circum-circle = (a√2)/2 Now, (Area of In-circle)/(Area of Circum-circle) = (π(a/2)²)/(π((a√2)/2)²) = 1/2 = 1:2
(√1157 + 10.15% of 159.89) × 4.85 + 150.25 = ? × 19.67
{(√2305) % of 74.69} × 15.21 - 27.89 × 44.88 + 45.12% of 2399.87
(9116.89 – 8024.89 + 902.95) × 14 = 1800 × ?
(124.99)² = ?
? * 4.89 = (410.15 ÷ 13.97) % of 6190 - 1342.77
181.87 ÷ 13.89 X 8.13 + ? = 11.852Â
(√845 ×19.932+ √4230 ×14.385)/(√1765 ×4.877 ) = ?
180.25 × 14.995 ÷ √26 = ? × 5.985
1224.86% of √6399.98 = (399.99/4.99)% of (? ÷ 6.91 + 39.87)Â
24.11% of 249.99 + √143.97 ÷ 12.02 = ?