Question
If log₁₀(x + 3) − log₁₀(x − 1) = 1, find the
value of x.Solution
ATQ,
log₁₀((x + 3)/(x − 1)) = 1 ⇒ (x + 3)/(x − 1) = 10¹ = 10 ⇒ x + 3 = 10(x − 1) ⇒ x + 3 = 10x − 10 ⇒ 13 = 9x ⇒ x = 13/9 Check: x − 1 > 0 ⇒ x > 1 13/9 ≈ 1.44 > 1 ✔ valid Answer: x = 13/9
What will be the product of smaller roots of both equations.
I. 2x² - 12x + 16 = 0
II. 4y² - 8y - 12 = 0
Solve the quadratic equations and determine the relation between x and y:
Equation 1: x² - 54x + 704 = 0
Equation 2: y² - 44y + 448 = 0
I. 5x² = 19x – 12
II. 5y² + 11y = 12
I. 3x² - 22 x + 40 = 0
II. 4y² + 22y + 24 = 0
I. x2 – 9x + 18 = 0
II. y2 – 5y + 6 = 0
I. p2 + 2p – 8 = 0 II. q2 – 5q + 6 = 0
I. 5x² - 28x + 39 = 0
II. 2y² - 13y + 20 = 0
I. 3x2 + 3x - 60 = 0
II. 2y2 - 7y + 5 = 0
I. 2y2 + 11y + 15 = 0
II. 3x2 + 4x - 4= 0