Start learning 50% faster. Sign in now
The perpendicular from the centre of the circle to its chord, bisects the chord. So, AC = CB = (24/2) = 12 cm Similarly, DF = FE In right rAOC, using Pythagoras theorem, AO2 = AC2 + CO2 Or, 132 = 122 + CO2 So, CO2 = 169 - 144 = 25 Or, CO = √25 = 5 cm And, OF = CF - CO = 5 + 4√5 - 5 = 4√5 cm In right rDOF, using Pythagoras theorem, DO2 = DF2 + OF2 So, DF2 = 132 - (4√5)2 Or, DF2 = 169 - 80 = 89 So, DF = √89 cm DE = DF + FE = 2DF = 2√89 cm
(25.111 % of 200) × 26 ÷ 12.99 – 18.88 × 15.82 + 150.33% of 3√ 4917 = ? – 200
...`sqrt(7744)` - `sqrt(4761)` + `sqrt(8281)` + `sqrt(5625)` + ? = 1856
1200% of 18 + √1600 + 62 = ?2 + (90 of 0.4)
225÷ 25 x 21 - 30 = ? + √2209 - √7744
7/11 × 1034 + 1(4/7) × 2401 = 1230 +?
862 - 37 – ? = – 432
779 + 136 – 334 = 270 + 121 + ?
81 ÷ 0.09 × 1.4 – 1223=?