Question
[(2/3 of 599.77) + (39.69% of 450.14)] ÷ [(5/8 of
399.79) - √120.91] = ? What approximate value will come in place of question (?) in the following given expression? You are not expected to calculate the exact value.Solution
[(2/3 of 599.77) + (39.69% of 450.14)] ÷ [(5/8 of 399.79) - √120.91 = [(2/3 of 600) + (40% of 450)] ÷ [(5/8 of 400) - √121] = [(2/3 × 600) + (0.4 × 450)] ÷ [(5/8 × 400) - 11] = [400 + 180] ÷ [250 - 11] = 580 ÷ 239 = 2.42 = 2 Answer: A
- If sin (4A − 5B) = (√2/2) and cos (A + B) = (√2/2), where 0° < A, B < 90°, then find the value of ‘A’.
The minimum value of 9 cos2 θ + 36 sec2 θ is
If 1 + sin 2θ = p2 and sin3 θ + cos3 θ = q then Which of the following is true ?
1. q3 – 2p + ...
If cos(2θ) = 1 - 2sin²(θ) and tan(θ) + cot(θ) = k, find the value of k when sin(θ) = 3/5.
Find the value of (1 - sin2q) X (secq + tanq) X (secq - tanq) X cosec2q
If 2cosθ + 8sin2θ = 11, where 0o < θ < 90o, then find the value of cot θ.
If sin x + cos x = √2 sin x, then the value of sin x - cos x is:
If x = r sin A cos B, y = r sin A sin B and z = r cos A, then find x² + y² + z².
If tan θ = 8/3 , then the value of (3Sinθ+2 Cosθ )/(3 Sinθ-2Cosθ) is
If sin 2A = cos (3A - 60o) , then find the value of sec 2A.