Question

    If tan x + cot x  = 7, find  tan3 x +

    cot3 x = ?
    A 323 Correct Answer Incorrect Answer
    B 322 Correct Answer Incorrect Answer
    C 302 Correct Answer Incorrect Answer
    D 222 Correct Answer Incorrect Answer

    Solution

    We know that, (a + b)3 = a3 + b3 + 3ab (a + b) Here, a = tanx and b = cotx tan x + cot x  = 7    {cubing both the side} (tanx + cotx)3 = 73 tan 3x + cot x + 3 (tanx + cotx) = 343 tan 3 x + cot x =  343 - 21 = 322 Alternate solution If  tan x + cot x  = N,  then,we can find the value by  tan3 x + cot3 x  =  N 3 - 3N so, here N = 7 tan3 x + cot3 x =  N 3 -3N =  7 3- 3  ×  7 = 343 - 21 = 322

    Practice Next

    Relevant for Exams: