Question
If a, b and c are integers such that a 2 +
b 2 + c 2 = 228, a + b + c = 26 and b = c, then find the value of a?Solution
We know, (a + b + c) 2 = a 2 + b 2 + c 2 + 2(ab + bc + ac)
Then, 26 2 = 228 + 2(ab + b 2 + ab)
224 = b(2a + b)
And, a + b + b = 26
a = 26 - 2b
Now, 224 = b(2(26 - 2b) + b)
b = 8, 28/3 (but b is an integer)
Then, b = 8 = c
Therefore, a = 26 - 2 * 8 = 10
Simplify the following trigonometric expression:
10 cos19∘ sec19∘ − 4cot28∘ tan28...
Simplify the following trigonometric expression:
8 cos 40° cosec 50° − 2 cot 30° cot 60°
Find the value of the given trigonometric expression:
(sin 15°cos 75° + cos²15°) × sin 30° + (cos 60°tan 45°) × sec 60°
...- If cosec [180° − (3q/2) ] = √2, 0° < q < 90°, then find the value of {(2/√3) X cos q - 4 cos 3q}.
- Simplify the following trigonometric expression:
15 cos 27° sec 63° − 9 cot 61° tan 29° - If cot A = √3, then what will be the value of cosec⁴ A?
If √3cosec 2x = 2, then the value of x:
- If sec A = 2, then what will be the value of sin² A?
What is the value of sin(B – C) cos(A – D) + sin(A – B) cos(C – D) + sin(C – A) cos(B – D)?