Question
If (x 4 Â + x 2 y 2 Â +
y 4 ) = 216 and (x 2 Â - xy + y 2 ) = 12, then find the value of '3xy'.Solution
x 2 Â - xy + y 2 Â = 12 -------- (I)
Using, (x 4 Â + x 2 y 2 Â + y 4 ) = (x 2 Â - xy + y 2 ) (x 2 Â + xy + y 2 )
216 = 12 X (x 2 Â + xy + y 2 )
Or, x 2 Â + xy + y 2 Â = 18 -------- (II)
On subtracting equation (II) from (I) ,
We get, x 2 Â - xy + y 2 Â - (x 2 Â + xy + y 2 ) = 12 - 18
Or, x 2 Â - xy + y 2 Â - x 2 Â - xy - y 2 Â = - 6
Or, 2xy = 6
Or, xy = 3
Required value = 3 X 3 = 9
3.98 × 29.67 ÷ 11.90 of √24.89 = ?% of 199.79
(1963.33 ÷ 6.5 - 193.99)/? = 753.02 ÷ 26.98
9.992 + (6.01 × 7.98) + ? = 320.03
(17.98% of 249.99) - 4.998 = √?
480 ÷ 10 + 18 % of 160 + ? * 9 = 60 * √36
What is the smallest integer that should be subtracted from 653 to make it divisible by both 23 and 27?
319.995 × 15.98 ÷ 4.002 - ? × 7.95 = 1679.89 ÷ 2.005