Question
If x2 - 3x + 2 is a factor of, x4
- px2 + q, then (p, q) =Solution
The factors of x2 - 3x + 2 are (x - 1) and (x - 2)  Let f(x) = x4 - px2 + q Since, f(x) is divisible by (x - 1) and (x - 2) f(1) = 0 and f(2) = 0 f(1) = 14 - p(1)2 + q = 0 f(1) = 1 - p + q = 0 …..(1) f(2) = 24 - p(2)2 + q = 0 f(2) = 16 - 4p + q = 0 ------ ( 2 ) Solving (1) and (2), we get p = 5; q = 4
Statements: D > E > F ≥ G = H; D ≤ I < J ≤ B; H ≤ K = M < L
Conclusions:
I. M ≥ I
II. H > I
III. L > F
Statement: C > B > T < J > D > M < Z
Conclusion: I. C > M II. C > Z
Statements: I ≤ J = K < L < M, G ≥ H = I = T
Conclusions: Â Â Â Â
 I. J > G
II. Â M = H
III. M > H
...Statements: R ≥ S; T = U < O; R ≥ O; V > T
Conclusions:
I. V > O
II. R > T
III. S > V
Statements:Â Â Â Â Â Â A @ D % M % N; M $ P $ Q
Conclusions :     I. D % Q                              I...
Statements:
A < B ≤ T < Y = O; V < R > K ≥ F > O
Conclusions:
I). B < R
II). Y ≥ K
...Statements: D > E > G ≤ H < I; G > P > F
Conclusions:
I. D > F
II. P < I
III. D > I
Statements: D = E ≥ M > H = L, H ≤ F < G ≤ J < I
Conclusions:
I. I > L
II. D ≥ F
III. G < EStatements:
P ≤ M < X > K; X < S > T; T < U < V
Conclusions:
I). Â P < S
II).  P ≥ S
...In the question, assuming the given statements to be true, find which of the conclusion (s) among given three conclusions is/are definitely true and th...